Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Obstet Gynecol ; 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2270055

ABSTRACT

BACKGROUND: Despite previous research findings on higher risks of stillbirth among pregnant individuals with SARS-CoV-2 infection, it is unclear whether the gestational timing of viral infection modulates this risk. OBJECTIVE: This study aimed to examine the association between timing of SARS-CoV-2 infection during pregnancy and risk of stillbirth. STUDY DESIGN: This retrospective cohort study used multilevel logistic regression analyses of nationwide electronic health records in the United States. Data were from 75 healthcare systems and institutes across 50 states. A total of 191,403 pregnancies of 190,738 individuals of reproductive age (15-49 years) who had childbirth between March 1, 2020 and May 31, 2021 were identified and included. The main outcome was stillbirth at ≥20 weeks of gestation. Exposures were the timing of SARS-CoV-2 infection: early pregnancy (<20 weeks), midpregnancy (21-27 weeks), the third trimester (28-43 weeks), any time before delivery, and never infected (reference). RESULTS: We identified 2342 (1.3%) pregnancies with COVID-19 in early pregnancy, 2075 (1.2%) in midpregnancy, and 12,697 (6.9%) in the third trimester. After adjusting for maternal and clinical characteristics, increased odds of stillbirth were observed among pregnant individuals with SARS-CoV-2 infection only in early pregnancy (odds ratio, 1.75, 95% confidence interval, 1.25-2.46) and midpregnancy (odds ratio, 2.09; 95% confidence interval, 1.49-2.93), as opposed to pregnant individuals who were never infected. Older age, Black race, hypertension, acute respiratory distress syndrome or acute respiratory failure, and placental abruption were found to be consistently associated with stillbirth across different trimesters. CONCLUSION: Increased risk of stillbirth was associated with COVID-19 only when pregnant individuals were infected during early and midpregnancy, and not at any time before the delivery or during the third trimester, suggesting the potential vulnerability of the fetus to SARS-CoV-2 infection in early pregnancy. Our findings underscore the importance of proactive COVID-19 prevention and timely medical intervention for individuals infected with SARS-CoV-2 during early and midpregnancy.

2.
PLoS One ; 17(10): e0276923, 2022.
Article in English | MEDLINE | ID: covidwho-2098766

ABSTRACT

OBJECTIVE: Identifying the time of SARS-CoV-2 viral infection relative to specific gestational weeks is critical for delineating the role of viral infection timing in adverse pregnancy outcomes. However, this task is difficult when it comes to Electronic Health Records (EHR). In combating the COVID-19 pandemic for maternal health, we sought to develop and validate a clinical information extraction algorithm to detect the time of clinical events relative to gestational weeks. MATERIALS AND METHODS: We used EHR from the National COVID Cohort Collaborative (N3C), in which the EHR are normalized by the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). We performed EHR phenotyping, resulting in 270,897 pregnant women (June 1st, 2018 to May 31st, 2021). We developed a rule-based algorithm and performed a multi-level evaluation to test content validity and clinical validity, and extreme length of gestation (<150 or >300). RESULTS: The algorithm identified 296,194 pregnancies (16,659 COVID-19, 174,744 without COVID-19) in 270,897 pregnant women. For inferring gestational age, 95% cases (n = 40) have moderate-high accuracy (Cohen's Kappa = 0.62); 100% cases (n = 40) have moderate-high granularity of temporal information (Cohen's Kappa = 1). For inferring delivery dates, the accuracy is 100% (Cohen's Kappa = 1). The accuracy of gestational age detection for the extreme length of gestation is 93.3% (Cohen's Kappa = 1). Mothers with COVID-19 showed higher prevalence in obesity or overweight (35.1% vs. 29.5%), diabetes (17.8% vs. 17.0%), chronic obstructive pulmonary disease (0.2% vs. 0.1%), respiratory distress syndrome or acute respiratory failure (1.8% vs. 0.2%). DISCUSSION: We explored the characteristics of pregnant women by different gestational weeks of SARS-CoV-2 infection with our algorithm. TED-PC is the first to infer the exact gestational week linked with every clinical event from EHR and detect the timing of SARS-CoV-2 infection in pregnant women. CONCLUSION: The algorithm shows excellent clinical validity in inferring gestational age and delivery dates, which supports multiple EHR cohorts on N3C studying the impact of COVID-19 on pregnancy.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Female , Pregnancy , Humans , COVID-19/epidemiology , Pandemics , Pregnant Women , Gestational Age , SARS-CoV-2 , Electronic Health Records , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome , Algorithms , Premature Birth/epidemiology
3.
Int J Environ Res Public Health ; 18(18)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1409571

ABSTRACT

Disparities and their geospatial patterns exist in morbidity and mortality of COVID-19 patients. When it comes to the infection rate, there is a dearth of research with respect to the disparity structure, its geospatial characteristics, and the pre-infection determinants of risk (PIDRs). This work aimed to assess the temporal-geospatial associations between PIDRs and COVID-19 infection at the county level in South Carolina. We used the spatial error model (SEM), spatial lag model (SLM), and conditional autoregressive model (CAR) as global models and the geographically weighted regression model (GWR) as a local model. The data were retrieved from multiple sources including USAFacts, U.S. Census Bureau, and the Population Estimates Program. The percentage of males and the unemployed population were positively associated with geodistributions of COVID-19 infection (p values < 0.05) in global models throughout the time. The percentage of the white population and the obesity rate showed divergent spatial correlations at different times of the pandemic. GWR models fit better than global models, suggesting nonstationary correlations between a region and its neighbors. Characterized by temporal-geospatial patterns, disparities in COVID-19 infection rate and their PIDRs are different from the mortality and morbidity of COVID-19 patients. Our findings suggest the importance of prioritizing different populations and developing tailored interventions at different times of the pandemic.


Subject(s)
COVID-19 , Humans , Male , Pandemics , SARS-CoV-2 , South Carolina/epidemiology , Spatial Regression
SELECTION OF CITATIONS
SEARCH DETAIL